
David M. Fields
Associate Research Scientist
Bigelow Laboratory for Ocean Sciences
60 Bigelow Drive
P.O. Box 380 East Boothbay, ME
USA 04544
Tel. 1-202-747-3255, ext. 313
Email: dfields@bigelow.org
See David’s lab web site HERE
See David’s profile on the Bigelow Lab web site HERE
See David’s ResearchGate profile HERE
Education
Ph.D., Oceanography, State University of New York (1996)
M.S., Oceanography, State University of New York (1991)
B.A., Biology, University of Utah (1986)
Outline of research
Dr. Fields is a zooplankton ecologist. The Fields’ laboratory studies the role of zooplankton (particularly copepods) in transferring organic matter through the food web and in mediating bio-geochemical cycling in the oceans. Our approach is to understand how the mechanisms that occur at the level of the individual animal drive regional and global scale distribution patterns in zooplankton. This work incorporates general data of zooplankton ecology (classical grazing experiments, egg production and developmental rates) as well as data from small-scale fluid mechanics, neurophysiology and animal behavior.
Ongoing Research
Sensory ecology and neurophysiology of marine zooplankton. We study the characteristics of the setal motion (and the required fluid motion and force) that gives rise to the neurophysiological response in copepod mechanoreceptors. The work aims to how copepods differentiate among the myriad of fluid signals in their environment and how copepods code these complex signals in a rapid yet highly accurate manner.
Impact of global climate change on zooplankton populations. We study effects of natural and anthropogenic changes on the energy transfer between trophic levels. Specifically we focus on grazing, respiration, reproduction and fecal pellet production rates of copepods under different climate scenarios.
Active projects
- NSF- Bio Oce. Ocean Acidification– Effects of ocean acidification on Emiliania huxleyi and Calanus finmarchicus; insights into the oceanic alkalinity and biological pumps.
- NSF- Chem Oce. Assessing the chemical speciation and bioavailability or iron regenerated by marine zooplankton.
- NOAA – Implications of ocean acidification on carbon export in a simplified planktonic food chain: Experiments using Acartia and Pleurochrysis.
- Moore Foundation – Carbon and gene flow mediated by virus.
- 2015-2018: Fine-scale interactions in the plankton: Empirical observations to parameterize trophodynamic and drift models
- 2018-2020: Capacity for adaptation to multiple climate change drivers in sub-Arctic invertebrates
- 2018-2020: Effect of multiple climate change drivers on the egg microbiome of Arctic and sub-Arctic copepods
- 2018-2020: The effects of the anti-sea lice chemotherapeutant, hydrogen peroxide, on non-target planktonic organisms around salmon farms
- 2018-2022: Decoding the sensory cues that link the salmon louse to its host: transcriptomics-physiology-behaviour-ecology
Publications
Vereide, E.H., M. Mihaljevic, H.I. Browman, D.M. Fields, M.D. Agersted, J. Titelman, K. de Jong. 2023. Effects of airgun discharges used in seismic surveys on development and mortality of the copepod Acartia tonsa. Environmental Pollution. doi: 10.1016/j.envpol.2023.121469.
Read the paper
Fields, D.M., J.A. Runge, C. Thompson, C.M.F. Durif, S. Shema, R.M. Bjelland, M.T. Arts, A.B. Skiftesvik and H.I. Browman. 2022. A positive temperature-dependent effect of elevated CO2 on growth and lipid accumulation in the planktonic copepod, Calanus finmarchicus. Limnology & Oceanography. doi: 10.1002/lno.12261.
Read the paper
Robinson, N.A., D. Robledo, L. Sveen, R. Daniels, A. Krasnov, A. Coates, Y.J. Ye, L. Barrett, M. Lillehammer, A. Kettunen, B. Phillips, T. Dempster, A. Doeschl-Wilson, F. Samsing, G. Difford, S. Salisbury, B. Gjerde, J.-E. Haugen, E. Burgerhout, B. Dagnachew, D.; Kurian, M.D. Fast, M. Rye, M. Salazar, J. Bron, S. Monaghan, C. Jacq, M. Birkett, H.I. Browman, A.B. Skiftesvik, D.M. Fields, E. Selander, S. Bui, A. Sonesson, S. Skugor, Ø. Knutsdatter, H. Tone-Kari, R. Houston. 2022. Application of genetic technologies to combat infectious diseases in aquaculture. Reviews in Aquaculture. doi: 10.1111/raq.12733.
Read the paper
Read a story about the work
Elmi, D., D.R. Webster & D.M. Fields. 2022. Copepod interaction with small‐scale, dissipative eddies in turbulence: Comparison among three marine species. Limnology and Oceanography 9999, 1-16. doi: 10.1002/lno.12169.
Read the paper
Aluru, N, D.M. Fields, S. Shema, A.B. Skiftesvik & H.I. Browman. 2021. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod Acartia tonsa, to elevated carbon dioxide. Ecology and Evolution 11: 16776-16785. doi: 10.1002/ece3.8309.
Read the paper
Elmi, D., D.R. Webster & D.M. Fields. 2021. The response of the copepod Acartia tonsa to the hydrodynamic cues of small-scale, dissipative eddies in turbulence. Journal of Experimental Biology 224, jeb237297. doi: 10.1242/jeb.237297.
Read the paper
Niemisto, M., D.M. Fields, K.F. Clark, J.D. Waller, S.J. Greenwood & R.A. Wahle. 2020. American lobster postlarvae alter gene regulation in response to ocean warming and acidification. Ecology and Evolution. DOI: 10.1002/ece3.7083.
Read the paper
Woods, M.N., T.J. Honga, D. Baughmanad, G. Andrews, D.M. Fields & P.A. Matrai. 2020. Accumulation and effects of microplastic fibers in American lobster larvae (Homarus americanus) . Marine Pollution Bulletin 157: 111280. doi: 10.1016/j.marpolbul.2020.111280.
Read the paper
Read a story about the work
Escobar, R.H., D.M. Fields, H.I. Browman, S.D. Shema, R.M. Bjelland, A.-L. Agnalt, A.B. Skiftesvik, O.B. Samuelsen & C.M.F. Durif. 2019. The effects of hydrogen peroxide on mortality, escape response and oxygen consumption of Calanus spp. Facets 4: 1–12. doi: 10.1139/facets-2019-0011.
Read the paper
Read a popularized summary
Read a story about the work
Thompson, C., J.A. Runge, D.M. Fields, S. Shema, R.M. Bjelland, C.M.F. Durif, A.B. Skiftesvik, M. Arts, A. Mount, V. Chan & H.I. Browman. 2019. The planktonic stages of the salmon louse (Lepeophtheirus salmonis) are tolerant of end-of-century pCO2 concentrations. PeerJ 7:e7810 http://doi.org/10.7717/peerj.7810.
Read the paper
Read an article about the work
Fields, D.M., N.O. Handegard, J. Dalen, C. Eichner, K. Malde, Ø. Karlsen, A.B. Skiftesvik, C.M.F. Durif & H.I. Browman. 2019. Airgun blasts used in marine seismic surveys have limited effects on mortality, and no sub-lethal effects on behaviour or gene expression, in the copepod Calanus finmarchicus. ICES Journal of Marine Science 76: 2033-2044. doi: 10.1093/icesjms/fsz126
Read the paper!
Read the Editor’s Choice summary of the article
Read a news story about the paper
Goode A.G., D.M. Fields, S.D. Archer & J.M. Martínez. 2019. Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi. PeerJ 7:e6722.
Read the paper
Weissburg, M.J., Yen, J. & D.M. Fields. 2019. Phytoplankton odor modifies the response of Euphausia superba to flow. Polar Biology 42: 509-516. doi: 10.1007/s00300-018-02440-w.
Read the paper
Núñez-Acuña, G., C. Gallardo-Escárate, A.B. Skiftesvik, D.M. Fields & H.I. Browman. 2019. Silencing of ionotropic receptor 25a decreases chemosensory activity of the salmon louse Lepeophtheirus salmonis during the infective stage. Gene 697: 35-39. DOI: 10.1016/j.gene.2019.02.012.
Read the paper
Woods, M.N., M.E. Stack, D.M. Fields, S.D. Shaw & P. Matrai. 2018. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin 137: 638-645.
Read the paper
Núñez-Acuña, G., C. Gallardo-Escárate, D.M. Fields, S. Shema, A.B. Skiftesvik, I. Ormazábal & H.I. Browman. 2018. The Atlantic salmon (Salmo salar) antimicrobial peptide Cathelicidin-2 is a molecular host recognition signal for the salmon louse (Lepeophtheirus salmonis). Scientific Reports. (2018) 8:13738 | DOI:10.1038/s41598-018-31885-6.
Read the paper
White, Meredith M., Jessica D. Waller, Laura C. Lubelczyk, David T. Drapeau, Bruce C. Bowler, William M. Balch & David M. Fields. 2018. Coccolith dissolution within copepod guts affects fecal pellet density and sinking rate. Scientific Reports 8:9758, DOI:10.1038/s41598-018-28073-x.
Read the paper
Fields, D.M., A.B. Skiftesvik & H.I. Browman. 2018. Behavioural responses of infective-stage copepodids of the salmon louse (Lepeophtheirus salmonis, Copepoda:Caligidae) to host-related sensory cues. Journal of Fish Diseases 41: 875-884.
Read the paper
View the cover image
Bailey, A., P. de Wit, P. Thor, H.I. Browman, R.M. Bjelland, S. Shema, D.M. Fields, J.A. Runge, C. Thompson & H. Hop. 2017. Regulation of gene expression underpins tolerance of the Arctic copepod Calanus glacialis to increased pCO2. Ecology and Evolution 2017: 1–16. https://doi.org/10.1002/ece3.3063
Read the paper
Bailey, A., P. Thor, H.I. Browman, D.M. Fields, J.A. Runge, A. Vermont, R. Bjelland, C. Thompson, S. Shema, C.M.F. Durif & H. Hop. 2017. Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2. ICES Journal of Marine Science 74: 996-1004.
Read the paper
Waller, J. D., Wahle, R. A., McVeigh, H., and D.M. Fields. 2017. Linking rising pCO2 and temperature to the larval development and physiology of the American lobster (Homarus americanus). ICES Journal of Marine Science 74: 1210–1219.
Read the paper
Gilg, I.C., S.D. Archer, S.A. Floge, D.M. Fields, A.I. Vermont, A.H. Leavitt, W.H. Wilson & J. Martínez Martínez. 2016. Differential gene expression is tied to photochemical efficiency reduction in virally-infected Emiliania huxleyi. Marine Ecology Progress Series 555: 13-27.
Read the paper
Runge J.A., D.M. Fields, C.R.S. Thompson, S.D. Shema, R.M. Bjelland, C.M.F Durif, A.B. Skiftesvik & H.I. Browman. 2016. End of the century CO2 concentrations do not have a negative effect on vital rates of Calanus finmarchicus, an ecologically critical planktonic species in North Atlantic ecosystems. ICES Journal of Marine Science 73(3): 937-950.
Read the paper
Vermont, A.I., J. Martínez Martínez, J. Waller, I.C. Gilg, A.H. Leavitt, S.A. Floge, S.D. Archer, W.H. Wilson & D.M. Fields. 2016. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. Journal of Plankton Research 38(5): 1194-1205. doi:10.1093/plankt/fbw064
Read the paper
Zarubin, M., Y. Lindemann, O. Brunner, D.M. Fields, H.I. Browman & A. Genin. 2016. The effect of hydrostatic pressure on grazing in three calanoid copepods. Journal of Plankton Research 38: 131-138.
Read the paper
Durif C.M.F., D.M. Fields, H.I. Browman, S.D. Shema, J.R. Enoae, A.B. Skiftesvik, R.M. Bjelland, R. Sommaruga & M.T. Arts. 2015. UV radiation changes algal stoichiometry but does not have cascading effects on a marine food chain. Journal of Plankton Research 37(6): 1120–36.
Read the paper
Fields, D.M., J.A. Runge, C. Thompson, S.D. Shema, R.M. Bjelland, C.M.F. Durif, A.B. Skiftesvik & H.I. Browman. 2015. Infection of the planktonic copepod Calanus finmarchicus by the parasitic dinoflagellate, Blastodinium spp.: effects on grazing, respiration, fecundity, and fecal pellet production. Journal of Plankton Research 37: 211-220.
Read the paper
Fields, D.M. 2014. The sensory horizon of marine copepods, pp: 157-179, In, Seuront, L. (Ed.), Copepods: Diversity, Habitat and Behavior. Nova Science Publishers, Inc.
Read the book chapter
Nuester J., S. Shema, A. Vermont, D.M. Fields, B.S. Twining. 2014. The regeneration of highly bioavailable iron by meso- and microzooplankton. Limnology and Oceanography 59(4): 1399–1409.
Read the paper
Fukunishi Y., H.I. Browman, C.M.F. Durif, R.M. Bjelland, S.D. Shema, D.M. Fields, A.B. Skiftesvik. 2013. Sub-lethal exposure to ultraviolet radiation reduces prey consumption by Atlantic cod larvae (Gadus morhua). Marine Biology 160: 2591-2596.
Read the paper
Runge, J.A., C. Thompson, R.M. Bjelland, H.I. Browman, C.M.F. Durif, D.M. Fields, S. Shema & A.B. Skiftesvik. 2013. Effects of ocean acidification on growth and development of the planktonic copepod, Calanus finmarchicus. Poster presented at the U.S. National Science Foundation’s 2nd U.S. Ocean Acidification Principal Investigator’s Meeting. Washington, D.C., USA, 18-20 September 2013.
View the poster
Fields D.M., S.D. Shema SD, H.I. Browman, T.Q. Browne & A.B. Skiftesvik. 2012. Light Primes the Escape Response of the Calanoid Copepod, Calanus finmarchicus. Plos ONE 7(6): e39594.
Read the paper
Browman, H.I., J. Yen, D.M. Fields, J.-F. St-Pierre & A.B. Skiftesvik. 2011. Fine-scale observations of the predatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responses of their ichthyoplankton prey, Atlantic cod (Gadus morhua). Marine Biology 158: 2653-2660.
Read the paper
Fields, D.M., C.M.F. Durif, R.M. Bjelland, S.D. Shema, A.B. Skiftesvik & H.I. Browman. 2011. Grazing rates of Calanus finmarchicus on Thalassiosira weissflogii cultured under different levels of ultraviolet radiation. PLoS ONE 6(19) e26333.
Read the paper
Fields, D.M. 2010. Orientation affects the sensitivity of Acartia tonsa to fluid mechanical signals. Marine Biology. 157: 505-514.
Read the paper
Abrahamsen, M.B., H.I. Browman, D.M. Fields & A.B. Skiftesvik. 2010. The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey. Marine Biology 157: 1251-1258.
Read the paper
Fields, D.M., M.J. Weissburg & H.I. Browman. 2007. Chemoreception in the salmon louse (Lepeoptheirus salmonis: an electrophysiological approach. Diseases of Aquatic Organisms 78: 161-168.
Read the paper
Fields, D.M. & M.J. Weissburg. 2005. Evolutionary and ecological significance of mechanosensor morphology: copepods as a model system. Marine Ecology Progress Series 287: 269-274.
Read the paper
Fields, D.M. & M.J. Weissburg. 2004. Rapid firing rates from mechanosensory neurons in copepod antennules. Journal of Comparative Physiology A 190: 877-882.
Read the paper
Lapesa, S., T.W. Snell, D.M. Fields & M. Serra. 2004. Selective feeding of Arctodiaptomus salinus (Copepoda, Calanaoida) on co-occurring sibling rotifer species. Freshwater Biology 49: 1053-1061.
Read the paper
Doall, M.H., J.R. Strickler, D.M. Fields & J. Yen. 2002. Mapping the attack volume of a free-swimming planktonic copepod, Euchaeta rimana. Marine Biology 140: 871-879.
Read the paper
Fields, D.M., D.S. Shaeffer & M.J. Weissburg. 2002. Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar. Ecol. Prog. Ser. 227: 173-186.
Read the paper
Fields, D.M & J. Yen, 2002. Fluid mechanosensory stimulation of behavior from a planktonic marine copepod Euchaeta rimana Bradford. J. Plankton. Res. 24(8): 747-755.
Read the paper
Lapesa, S., T.W. Snell, D.M. Fields & M. Serra. 2002. Predatory interactions between a cyclopoid copepod and rotifer sibling species. Freshwater Biology 47: 1685-1695.
Read the paper
Preston, B.L., T.W. Snell, D.M. Fields, M.J. Weissburg. 2001. The effects of fluid motion on toxicant sensitivity of the rotifer Brachionus calyciflorus. Aquatic Toxicology 52(2): 117-131.
Read the paper
Fields, D.M. 2000. Characteristics of the high frequency escape reactions of Oithona sp. Marine and Freshwater Behaviour and Physiology 34: 21-35.
Read the paper
Gries, T., K. Johnk, D.M. Fields & J.R. Strickler. 1999. Size and structure of ‘footprints’ produced by Daphnia: impact of animal size and density gradients. J. Plankton Res. 21: 509-523.
Read the paper
Moore, P.A., D.M. Fields, & J. Yen. 1999. The physical constraints of chemoreception in foraging copepods. Limnol. Oceanogr. 44(1): 166-177.
Read the paper
Fields, D.M. 1998. The implications of biologically and physically created fluid motion on the sensory horizon of copepods. Oceanography 11(2): 26.
Fields, D.M. & J. Yen. 1997. Implication of copepod feeding currents on the spatial orientation of their prey. J. Plankton Res. 19: 79-85.
Read the paper
Fields, D.M. & J. Yen. 1997. The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plankton Res 19: 1289-1304.
Read the paper
Fields, D.M. 1996. The Interaction of Calanoid Copepods with a Moving Fluid Environment: Implications for the Role of Feeding Current Morphology in Predator – Prey Interactions. Ph.D. State University of New York. p. 353.
Fields, D.M. & J. Yen. 1996. The escape behavior of Pleuromamma xiphias from a quantifiable fluid mechanical disturbance. In Lenz, P.H., D.K. Hartline, J.E. Purcell, & D.L. Macmillan. (eds.), Zooplankton: Sensory Ecology and Physiology. Vol. 1, pp. 323-340. Gordan and Breach Publ., Amsterdam.
Jonasdottir, S. H., D.M. Fields, and S. Pantoja. 1995. Copepod egg production in Long Island Sound as a function of the chemical composition of seston. Mar. Ecol. Prog. Ser. 119: 87-98.
Read the paper
Fields, D.M. & J. Yen. 1993. Outer limits and inner structure: the 3-dimensional flow field of Pleuromamma xiphias (Copepoda). Bull. Mar. Sci. 53: 84-95.
Read the paper
Yen, J. & D.M. Fields. 1992. Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Erg. der Limnol.: 36: 123-134.