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Abstract

The timing and magnitude of an escape reaction is often the determining factor governing a copepod’s success at avoiding
predation. Copepods initiate rapid and directed escapes in response to fluid signals created by predators; however little is
known about how copepods modulate their behavior in response to additional sensory input. This study investigates the
effect of light level on the escape behavior of Calanus finmarchicus. A siphon flow was used to generate a consistent fluid
signal and the behavioral threshold and magnitude of the escape response was quantified in the dark and in the light. The
results show that C. finmarchicus initiated their escape reaction further from the siphon and traveled with greater speed in
the light than in the dark. However, no difference was found in the escape distance. These results suggest that copepods
use information derived from multiple sensory inputs to modulate the sensitivity and strength of the escape in response to
an increase risk of predation. Population and IBM models that predict optimal vertical distributions of copepods in response
to visual predators need to consider changes in the copepod’s behavioral thresholds when predicting predation risk within
the water column.
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Introduction

For a predator, an unsuccessful predation event results only in

its continued hunger [1]. For the prey, however, an unsuccessful

escape response can result in injury or death. In response to such a

strong selective pressure, prey have evolved an array of behavioral,

sensory and mechanical mechanisms to minimize the risk of

predation.

Copepods are heavily preyed upon by visual predators, mainly

fish [2]. In response to potential predatory threats, copepods

exhibit a rapid and directed escape reaction. Calanoid copepods

have evolved very effective escape reactions in response to

predators [3,4]. However, few studies address the stimulus

thresholds needed to elicit the escape reaction in copepods and/

or how they are modulated by environmental factors such as light.

The biological and physical environment of pelagic copepods

requires highly discriminate and yet rapid behavioral responses.

Living at low Reynolds numbers, chemical stimuli are transported

to the copepod’s sensors largely through the slow process of

laminar fluid displacement and Fickian diffusion [5]. Similarly,

mechanical stimuli are attenuated quickly by viscous dampening

causing fluid velocity to decrease with distance cubed [6]. Because

these signals attenuate rapidly with distance, copepods often do

not detect other individuals until they are within a few body

lengths and have, therefore, evolved mechanisms to maximize

their ability to detect predators [7,8,9], minimize their behavioral

latencies [10], and achieve extraordinarily rapid escape velocities

[3,4,11,12].

Mechanoreception is a primary mechanism for the remote

detection and discrimination of predators [6,9,13,14]. Numerous

mechanoreceptive setae populate the first antennae of copepods

providing a wide range in sensitivity to fluid mechanical signals

[14,15,16,17]). Escape behaviors appear to be initiated in response

to relatively few neural signals [17] initiated by sensor displace-

ments of as little as 10 nm [13,14]. Transmission speed from the

sensor to the motor neurons is augmented by myelin-like

structures along the neurons, permitting behavioral responses

within ms of signal generation [10]. Despite the extreme sensitivity

of individual mechanosensory setae, copepods rarely respond

behaviorally to these small fluid disturbances. Thresholds for

initiating behavioral responses are often orders of magnitude

higher than neurophysiological thresholds [6], suggesting that

copepods can modulate their responses based on perceived risk.

In addition to mechanical signals, copepods also detect and

respond to light [18]. Much of the work investigating the response

of copepods to light has involved flashing stimuli as a mechanism

to directly stimulate copepod behavior [19,20]. This is in contrast

to most ecological situations, where light levels remain relatively

constant. Under these conditions, light intensity or gradients in

light levels are unlikely to act as the proximate cue driving the

initiation of the rapid escape reaction but may modulate the

behavioral sensitivity of copepods to other sensory cues, including

fish kairomones [21] and mechanical signals. Little is known about

the interactive effects of visual and mechanosensory stimulation on

copepods. However, since visual predators attack copepods more

often and at greater distances in the light rather than in the dark
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[22,23] it is reasonable to hypothesize that copepods alter their

behavioral sensitivity to mechanosensory stimulation when light

levels favor the success of visual predators.

Calanus finmarchicus are prey to visual predators including fish

[24] and krill [23]. In this study a siphon flow was used to

investigate the behavioral sensitivity of Calanus finmarchicus CV and

adult stages to fluid mechanical signals in the light and dark. We

hypothesized that, in response to the higher predation risk from

visual predators in the light, C. finmarchicus will initiate an escape

reaction at a lower threshold (further from the source) in the light

than in the dark. In addition to the lower behavioral threshold, the

magnitude of the escape response was hypothesized to be greater

when the perceived predation threat was higher.

Methods

Test animals
Copepods (Calanus finmarchicus) were cultured in large 5000 L

flow-through silos at the Institute of Marine Research’s Austevoll

Research Station, Norway. Animals were maintained at 12.5uC on

a mixed diet of Rhodomonas baltica, and Isochrisis sp. at a food level of

26104 cells mL21. Individual adult stage copepods were collected

in a large beaker and held for ,2 hours in 20 L buckets at 12.5uC
in the dark prior to testing. Copepods (100–150 per treatment)

were placed within the filming vessel (tank size 25 cm 625 cm

660 cm; 37.5 L) and allowed to acclimate to the test condition for

Figure 1. Filming apparatus used to examine the escape
reaction of Calanus finmarchicus in response to a suction flow.
The tank volume was 37 L (25625660 cm). The total volume viewed
using this optical setup was ,2.5 L surrounding the siphon
(10610625 cm). Red dot in the center of the animal indicates the data
point taken from the video frame just prior to the initiation of the
escape reaction. The distance of copepod from the siphon at the
initiation of the escape response represents the detection threshold.
Once the animal initiated the escape reaction (retracts its antennae), the
total distance traveled and the speed of the escape were measured.
doi:10.1371/journal.pone.0039594.g001

Figure 2. Median distance from the siphon at which Calanus
finmarchicus initiated an escape reaction in the dark (solid
circles) and in the light (open circles). Lower and upper whiskers
represent the 25% and 75% distribution. See table 1 and 2 for data and
statistics for light and dark treatments, respectively.
doi:10.1371/journal.pone.0039594.g002

Figure 3. Escape distributions of Calanus finmarchicus from a
siphon flow. Frequency has been normalized to total number of
escapes for each treatment; n = 66 for the dark and n = 50 in the light.
Distribution were tested on raw data using a Mann-Whitney ranked
sum test and found to be significantly different. U Statistic = 1230.5
(P = 0.019).
doi:10.1371/journal.pone.0039594.g003

Table 1. Distance from the siphon at which Calanus
finmarchicus initiated an escape reaction in the dark as a
function of angle.

Angle N Median 25% 75%

15 6 6.1 5.4 7.6

45 29 7.3 6.4 10.2

75 31 6.6 5.9 10.0

Data was tested using Kruskal-Wallis One Way Analysis of Variance on Ranks.
H = 2.406 with 2 degrees of freedom. (P = 0.300).
doi:10.1371/journal.pone.0039594.t001

Escape Response of Calanus finmarchicus

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e39594



10 minutes. Animals were filmed for 30 minutes. To test if light

levels modulate copepod escape characteristics, a constant fluid

mechanical signal was maintained and tested the response of

copepods in the dark and at light levels found at 20 m during an

average Bergen, Norway summer (see below).

Siphon Tank Configuration
A siphon flow was used to create a stable fluid mechanical

disturbance. The resulting flow fields are well-characterized and

have been used to analyze copepod escape behavior [25,26,27].

The flow was created by a gravity-forced drain through a 16-

gauge, stainless steel, flat-tip hypodermic needle mounted 70 mm

above the bottom of the tank. The flow rate exiting the tank was

2.0 mL s21. A constant head pressure was maintained by

simultaneously returning the drained water to the top of the tank.

To diminish the disturbance to the calibrated flow field created by

the siphon, incoming water was pumped back into the tank

through a 105 mm diameter vessel with a 35 mm mesh screen

located just below the water’s surface (Fig. 1). The experiment was

conducted in a climate controlled room at 12.5 (±0.5) uC. Each

experimental condition was run in triplicate with 100–150 animals

per replicate (2.6–4.0 animals L21). Each replicate was filmed for

30 minutes. Animals were not used more than once.

Light signal
Copepod escape responses were observed under two light

settings (changed using quartz substrate neutral density filters

applied to the collimated output of a 1000 W Xenon arc lamp).

The light beam was positioned above the tank to produce a

homogeneous light field at the top of the filming vessel. Light levels

used in these experiments simulated dusk (1.0761024 W cm22)

and darkness at a depth of ,20 meters [28], corresponding to the

upper range of distribution of Calanus finmarchicus in the fiords

outside of Bergen Norway during mid Spring.

Video observations and analyses
Silhouette imaging was used to observe copepod behaviour in

3D. The optical setup provides fine-scale behavioral observations

with an image quality that is unaffected by ambient light levels

(described in [29]). In short, the system consists of two

orthogonally-oriented cameras with a far red light emitting diode

(LED) placed at the focal point of a biconvex collimating lens, the

output beam (15 cm diameter) of which passes through an

aquarium (25625660 cm) placed at the intersection. Video

images are collected at 25 hz. The total volume viewed using this

optical setup is ,2.5 L surrounding the siphon (10610625 cm).

The velocity (V) of the water entrained by the siphon decreases

exponentially with distance (r) from the siphon as:

V = Q (4p r2)21where Q is the volume exiting the siphon [26].

At edges of the viewing area (5 cm from the siphon) the flow

created by the siphon is 60 um s21. This is well below the escape

threshold for most species [9] and near the neurophysiological

threshold for detection [14].

Animal position, speed and distance travelled were measured

using custom designed software packages (Measure, by JASCO

Research; described in [30]).

Behavioral Analyses
The threshold and magnitude of escape response of CV and

adult stage Calanus finmarchicus was quantified using three

characteristics of their escape reaction. To determine the

behavioral threshold of the escape response, we measured the

distance from the flow source (suction flow: see below) at which the

copepod initiated an escape reaction. Once initiated, the

magnitude of the escape reaction was assessed by the measuring

the average speed of the entire escape reaction and the total

distance traveled during the escape.

The appendages (and their motion) involved in an escape

reaction have been described for Cyclops sp. [3,10,31] and Oithona

sp [32] and can easily be differentiated from a simple flick response

or an attack response [6] based on the appendages used. The

escape reaction can involve a single jump during which the

antennae are drawn to the sides of the body followed by the

motion of the swimming legs or a series of jumps in which there is

one beat of the first antenna followed by multiple cycles of motion

in the swimming legs [3,32]. Both single and multiple jumps (from

a single escape) were quantified in this analysis. Since the threshold

for the escape reaction decreases with multiple sequential escapes

[32], in cases where the flow re-entrained the same animal after an

Table 2. Distance from the siphon at which Calanus
finmarchicus initiated an escape reaction in the light as a
function of angle.

Angle N Median 25% 75%

15 4 10.7 8.2 12.1

45 21 11.4 6.8 15.1

75 25 8.8 6.0 12.4

Data was tested using Kruskal-Wallis One Way Analysis of Variance on Ranks.
H = 1.100 with 2 degrees of freedom. (P = 0.577).
doi:10.1371/journal.pone.0039594.t002

Table 3. Distance at which Calanus finmarchicus initiated an
escape reaction from the siphon in the dark and light.

Treatment N Median 25% 75%

Dark 66 6.9 6.0 9.9

Light 50 9.4 6.4 14.1

Data tested with a Mann-Whitney ranked sum test. U Statistic = 1230.5
(p = 0.019).
doi:10.1371/journal.pone.0039594.t003

Figure 4. Average escape speed of Calanus finmarchicus from a
siphon flow (± standard error of the mean). Mean values are
significantly different (p = 0.01; n = 66 for the dark and n = 50 in the
light).
doi:10.1371/journal.pone.0039594.g004

Escape Response of Calanus finmarchicus
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escape, only the first escape reaction was used for further analysis.

Escape reactions that occurred below the mouth of the siphon, or

whose location was obstructed by another animal in one of the

views, were not used in this analysis. The escape distance was

calculated as the cumulative distance traveled over the entire

escape sequence. The distance was calculated at 40 ms intervals to

capture the total length of a tortuous path. The speed of the escape

reaction was calculated as the total distance traveled during the

escape response divided by the duration of the entire escape

reaction.

Statistical Analysis
The distances from the siphon at which Calanus finmarchicus

initiated the escape reaction (threshold) and the total distance

traveled during the escape reaction were not normally distributed.

Therefore, differences in the threshold distance and travel distance

were analyzed using the non-parametric Mann-Whitney ranked

sum test. The escape speeds, which were normally distributed,

were analyzed using a 2 tailed t-test.

Results

The escape characteristics of a total of 116 copepods were

examined at the two light levels. Each replicate tank produced

between 15–26 escape reactions in both the light and dark

treatments. No significant difference was found between replicates

within the same treatment and they were, therefore, pooled for

further analyses. All animals entrained by the siphon initiated an

escape reaction. Two copepods initiated an escape reaction but

were captured by the siphon. The escape characteristics of these

animals were not analyzed as part of this study.

Escape Sensitivity
The behavioral threshold for C. finmarchicus to the fluid

mechanical signal was quantified as the distance from the siphon

at which the animals initiated their escape reaction (Fig. 1). The

distribution of escape reactions surrounding the siphon were

laterally symmetrical in both the light and the dark treatments and

were, therefore, transposed into a single quadrant for further

analysis (Fig. 2). Within each treatment, the escape distances did

not differ with respect to the angle of entrainment relative to the

siphon (Tables 1 and 2). However, comparison of the escape

reactions in light and dark treatments showed significant

differences (Table 3; Fig. 3). C. finmarchicus initiated their escape

reactions significantly further from the siphon flow in the light.

The median value for the escape distance was 6.9 mm (3.1 body

lengths; BL) from the siphon mouth in the dark and 9.4 mm (4.2

BL) in the light; an increase of 36%.

Strength of the escape reaction
Once the escape reaction was initiated, the strength of the

response was quantified by the speed of the escape and total

distance traveled. Escape speed of C. finmarchicus was significantly

faster in the light than in the dark (Table 4; Fig. 4). In the dark, the

average escape speed was 119 mm s21 (±53.6 BL s21). In the

light, the average escape speed was 140 mm s21 (±63.6 BL s21),

an increase of 18% compared to the escape speeds in the dark.

The higher escape speeds, however, did not result in a greater

distance traveled during the escape (Table 5). Median value for the

escape distance in the dark was 16.7 mm (7.6 body lengths; BL)

and 14.7 mm (6.7 BL) in the light. Distance from the siphon at

which the copepod initiated the escape reaction explained only a

small fraction of the variation in either the speed of the escape

reaction (r2,0.01) or the total distance traveled (r2,0.06) during

the escape.

Discussion

The distance from the predator at which an organism initiates

an escape response and the strength of the escape (speed and

distance traveled) can be the determining factors governing an

organism’s ability to avoid predation [9,33]. While it is known that

copepods modulate their activity with changes in perceived

predation risk and food availability [34,35,36,37,38], this is the

first study to examine the effects of ambient light levels on the

sensitivity and magnitude of their escape reaction.

Virtually all copepods exhibit an escape reaction in response to

a perceived predation threat. Consistent with earlier studies [9,26],

our data shows that copepods remotely detect the fluid mechanical

disturbance generated by the siphon and initiate an escape

reaction in response to it. The distance from the siphon at which

Calanus finmarchicus initiated the escape reaction showed no

significant difference with respect to the angle from the siphon

(Table 1–2; Fig. 2). These results are inconsistent with the data

reported for Acartia tonsa [39] which showed the greatest sensitivity

when approached laterally by the suction flow. Differences in

antennule architecture may provide part of the answer to this

inconsistency. The setal array on the antennules of Calanus

finmarchicus are organized linearly along the antennule with nearly

all of the mechanosensory setae pointing anterior to the animal.

Acartia tonsa, in contrast, has setae surrounding the axis of the

antennule, potentially providing much greater three dimensional

spatial resolution of surrounding fluid motion.

The behavioral sensitivity (Fig. 3, Table 3) and the magnitude

(Fig. 4, Table 4) of the escape reactions undertaken by Calanus

finmarchicus were higher in the light relative to the dark treatment.

These results are consistent with previous studies that demon-

strated the synergistic effects of different sensory cues on the

behavioral response of marine crustaceans [21,40]. For visual

predators, the greater the intensity of the light, the further the

predators can see their prey and initiate an attack [41,42,43].

Since light intensity decays exponentially with depth, predation

risk has been hypothesized and modeled to show a similar decline

(e.g. [44]). Experiments on feeding in fish demonstrate that the

Table 4. Escape speed of Calanus finmarchicus from the
siphon in the dark and light.

Treatment N Mean (± STD) SEM

Dark 66 119.0 (39.2) 4.8

Light 50 140.0 (45.6) 6.5

Data tested with standard t-test. t = 2.67 (p = 0.009)
doi:10.1371/journal.pone.0039594.t004

Table 5. Escape distance of Calanus finmarchicus from the
siphon in the dark and light.

Treatment N Median 25% 75%

Dark 66 16.7 11.4 26.4

Light 50 14.7 11.4 29.8

Data tested with a Mann-Whitney ranked sum test. U Statistic = 1644.5
(p = 0.98).
doi:10.1371/journal.pone.0039594.t005

Escape Response of Calanus finmarchicus
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light level and optical properties of the water determine the

likelihood that prey is detected and consumed [11,45]. The vision-

based predation model of Eggers [46], and later models (e.g.

[47,48,49], concluded that correctly incorporating the optical

environment is essential to predicting the outcome of visual

predation. However, these results are consistently based on the

assumption that the escape response of prey is constant, an

assumption that is falsified by the results of this study.

When feeding, planktivorous fish entrain a discrete volume of

fluid during each strike (Fig. 5). A subset of the entrained volume

enters the buccal cavity. Although there is only limited data

available quantifying the volume engulfed by different sizes or

species of fish, Day et al, [50] estimates that a 15 cm bluegill

sunfish ingests a volume of fluid (capture volume) ranging from 1.8

to 6.5 mL during a single strike. Assuming a sphere surrounding

the mouth of the fish, the lateral extent of this volume is ,7.5 to

11.6 mm from the mouth of the fish. Copepods that are further

away (outside of the capture volume) are not at risk of being

consumed during the predatory attack, although they may be

entrained by the fluid. These copepods do not need to initiate an

escape reaction. In contrast, copepods within the capture volume

need to initiate an escape reaction to avoid being consumed. As

the fish begins to engulf the fluid, the outer edge of the volume

moves inward and the speed of fluid within the capture volume

gets progressively faster. Thus, by waiting, the copepod decreases

the distance that they need to travel during the escape but they

must increase the velocity needed to escape entrainment. On

average, copepods initiate an escape reaction when they were

6.9 mm and 9.4 mm from the siphon in the light and dark

respectively, falling just within the hypothetical capture volume of

the bluegill sunfish. The average escape distance of C. finmarchicus

(20.9 mm) would transport the copepod well outside this capture

volume providing the copepod a temporary reprieve from the

threat of predation. The risk of a second attack would depend in

part on the visual acuity of the predator, light level and the optical

quality of the water ([51] and refs therein).

Fluid mechanical disturbances become neurological signals

through the motion of one or several of the numerous

mechanoreceptive setae that adorn the antennules of copepods

[13,15,17]. The fluid speed needed for the escape reaction

(behavioral threshold) is orders of magnitude higher than the fluid

speed needed to generate a neurophysiological signal. Neurophys-

iological data suggest that individual mechanoreceptors of

copepods are sensitive to nanometer displacements and can detect

fluid velocities as low as 20 mm s21 [13]. If eliciting the earliest

escape reaction possible was the only factor determining the

threshold at which prey initiate an escape reaction, the escape

would occur when fluid speeds exceed 20 mm s21. At flow rates

used in this study (,2 mL s21), escape reactions would occur at

125 mm (56BL) from the siphon. Assuming that the neurophys-

iological thresholds are similar to those reported above, C.

finmarchicus do not escape at their neurophysiological threshold

but rather initiate escapes only in response to much higher signal

strength. The intermediate value of the escape threshold suggests

two opposing forces which determine the upper and lower limits of

the magnitude of the stimulus needed to cause an escape reaction

[9]. The upper limit is probably defined by the risk of a delayed

escape reaction. The strike efficiency of a predator commonly

increases with decreased distance from its prey. Therefore, as the

predator approaches the copepod, the longer they wait before

initiating an escape reaction the higher the probability of being

captured. The finality of an unsuccessful escape clearly has strong

evolutionary repercussions on the individual and is expected to

apply strong selection pressure in shaping the timing and location

of the escape reaction.

Less obvious, and more difficult to assess, are the conditions that

give rise to an inhibition of the escape reaction despite being

within the neurophysiological detection limit of the copepod

Figure 5. Hypothetical predatory interaction between a planktivorous fish and their copepod prey. Shaded region represents the
maximum volume of water entrained during a single strike. The dark shaded area represents the region where the fluid mechanical threshold evokes
an escape reaction by the copepod in the dark. The light shaded region represents the location where the escape reaction is initiated in the light. In
both cases, the distance traveled during the escape is sufficient to remove the copepod from the capture volume.
doi:10.1371/journal.pone.0039594.g005
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[36,52]. There are several possible explanations to account for this

discrepancy. The first is that the escape reaction incurs an

energetic cost on the copepod, consuming up to 400 times the

normal energetic expenditure [3,53,54]. With such high energetic

costs, it is important that the first escape effectively remove the

copepod from the visual field (or at least the strike range) of the

predator. Repetitive escapes draw from metabolic reserves causing

each sequential escape to be slower and to transport the copepod a

shorter distance [32]. Kils [55] showed that exhausted copepods

are captured more easily by juvenile herring. Secondly, unneces-

sary escape reactions increase predation risk by attracting the

attention of visual [9,56,57] and mechanoreceptive predators

[58,59]. An additional consequence of the rapid escape response is

the increased encounter rate with predators that results from the

higher swimming speeds [60]. In this context, the escape threshold

of the copepod should be a function of the risk of predation due to

a delayed escape reaction and the energetic cost and increased

predation risk associated with an unnecessary escape [9,52].

It has long been hypothesized that copepods attempt to decrease

predation risk from visual predators by vertically migrating out of

the photic zone during the day [61,62,63]. Leaving the warm,

food-rich photic zone is not without energetic cost, however. As

copepods move to colder, food-depleted waters they experience

decreased ingestion rates, lower growth rates and ultimately

produce fewer eggs (e.g. [64,65]). Entering the surface water

earlier in the day or delaying when they descend could, therefore,

provide greater fitness if the risk of predation is diminished [52].

Indirect effects of predation can have enormous impact on the

reproductive outcomes of invertebrate prey [66]. An adaptive

escape threshold that varies with changing predation risk provides

a potential mechanism for copepods to extend their stay in the

surface water. Modeling optimal behavior has become a fashion-

able tool for interpreting distribution patterns of zooplankton.

Although most models incorporate vertical migration of copepods

in response to light in their calculations, the escape characteristics

to visual predators are always held constant. By modulating the

escape reactions toward higher sensitivity and greater escape

magnitude, copepods may be able to stay further up in the water

column than previously assumed. Empirical observations such as

those reported here are essential to accurately parameterize

individual based ecological models [49,67] and are required to

arrive at an intuitive mechanistic understanding of trophic

interactions.
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