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ABSTRACT
Wrasse (Labridae) fisheries have increased markedly in Norway since 2010. Wrasse are being
used as cleaner fish in salmonid aquaculture to control sea-lice infestations. However,
fundamental knowledge on the demography and abundance of the targeted wrasse
populations in Norwegian waters is lacking, and the consequences of harvesting at the
current intensity have not been assessed. Here, we compared catch per unit effort (CPUE),
size, age and sex ratio of goldsinny wrasse (Ctenolabrus rupestris) and corkwing wrasse
(Symphodus melops) between marine protected areas (MPAs) and control areas open for
fishing at four localities on the Skagerrak coast in Southern Norway. The CPUE of goldsinny
larger than the minimum size limit was 33–65% higher within MPAs, while for corkwing
three of four MPAs had higher CPUE with the relative difference between MPAs and control
areas ranging from −16% to 92%. Moreover, corkwing, but not goldsinny, was significantly
older and larger within MPAs than in control areas. Sex ratios did not differ between MPAs
and control areas for either species. Our study suggests that despite its short history, the
wrasse fisheries have considerable impacts on the target populations and, further, that small
MPAs hold promise as a management tool for maintaining natural population sizes and size
structure. Goldsinny, being a smaller-sized species, also seems to benefit from the traditional
minimum size limit management tool, which applies outside MPAs.
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Introduction

Different species of wrasse (Labridae) are among the
most numerous fish species on shallow rocky reefs
and coastlines in Northern Europe, but their commer-
cial value as food fish is low due to their relatively
small body size. However, since the late 1980s, wild-
caught goldsinny wrasse Ctenolabrus rupestris
(Linnaeus, 1758), corkwing wrasse Symphodus melops
(Linnaeus, 1758), ballan wrasse Labrus bergylta
Ascanius, 1767 and rock cook Centrolabrus exoletus
(Linnaeus, 1758) have been used as cleaner fish in
open-pen farming of Atlantic salmon Salmo salar Lin-
naeus, 1758 to reduce infestations of salmon lice
Lepeophtheirus salmonis Krøyer, 1837 in Norway and
the British Isles (Bjordal 1988; Darwall et al. 1992; Treas-
urer 1996). The Norwegian demand for wild-caught
wrasse increased sharply after 2009 when the lice
problem intensified as the lice had evolved resistance
to most of the available pesticides (Costello 2009;

Besnier et al. 2014; Skiftesvik et al. 2014a). In 2014
and 2015, wrasse landings surpassed 20 million individ-
uals, with corkwing and goldsinny wrasse being the
dominant species (The Norwegian Directorate of Fish-
eries). Wrasse are caught by small boats operating
inshore using fyke nets and pots and are transported
with boats or trucks to the salmon farms. The fishery
is regulated with minimum size limits, gear modifi-
cations for the escapement of undersized fish and a
fishing closure from January to July. From 2015,
minimum size limits were species-specific (goldsinny
11 cm, corkwing 12 cm and ballan 14 cm), after pre-
viously being the same for all wrasse (11 cm) (Skiftesvik
et al. 2014a). In addition, a total landing cap of 18
million individuals has been set in 2016, divided
among three regions (south, 4 million; west, 10
million; and north, 4 million individuals).

Whether and how the wrasse fishery affects the
natural populations inNorway hasnot been investigated
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and the increasing exploitation has attracted concerns
from the scientific community (Espeland et al. 2010; Skif-
tesvik et al. 2014a, 2014b; Halvorsen et al. 2016). The
sedentary behaviour of wrasses poses a challenge for
management and fisheries assessments; they hold terri-
tories and have small home ranges (Hilldén 1981; Potts
1985; Sayer 1999; Villegas-Ríos et al. 2013). Also, large
differences in species composition, abundance and
life-history traits have been observed on small spatial
scales (Varian et al. 1996; Sayer et al. 1996a; Skiftesvik
et al. 2014b). Goldsinny and corkwing populations are
also genetically structured in Norway (Sundt & Jørstad
1998; Gonzalez et al. 2016). During the wrasse fisheries
in the British Isles in the 1990s, harvested populations
of corkwing and goldsinny showed signs of reductions
in abundance and changes in size structure (Darwall
et al. 1992; Varian et al. 1996; Sayer et al. 1996b). Probably
around 150,000 wrasses were caught and used in Scot-
land in 1994 (Treasurer 1996), while the total catch in
Norway in 2015 reached 21 million individuals. The
higher intensity of the current Norwegian fishery raises
concerns about its long-term sustainability. However,
fishery impacts on the wild wrasse populations in
Norway remain unclear, partly due to data deficiency.

Marine protected areas (MPAs) represent a tool for
management and conservation where selected areas
are partially or completely closed for harvesting.
Depending on the MPA design (size, location, distance
to nearbyMPAs and fishing pressure) and the behaviour
and ecology of the protected species, this may preserve
natural densities and demography and in some cases
increase fishery yields through spill-over of adults or
increased overall recruitment (Babcock et al. 2010;
Gaines et al. 2010; Goñi et al. 2010). MPAs have been
highlighted specifically as useful for protecting and
managing sedentary reef fishes (Roberts & Polunin
1991; Carr & Reed 1993; Gunderson et al. 2008). On
the Skagerrak coastline in southern Norway, six
smaller partially protected areas were established in
2006 (four) and 2012 (two), and have been demon-
strated to yield positive effects on biomass, size struc-
ture and mortality rates of European lobster Homarus
gammarus (Linnaeus, 1758) and Atlantic cod Gadus
morhua Linnaeus, 1758 (Moland et al. 2013; Fernán-
dez-Chacón et al. 2015). These are partially protected
areas where passive standing types of gear are prohib-
ited (gillnets, pots and fyke nets). Wrasses are effectively
fully protected in all these MPAs because they are not
normally targeted in recreational hook-and-line
fisheries.

Here, we studied catch per unit effort (CPUE), age,
size and sex ratio of goldsinny and corkwing wrasse
on the Skagerrak coastline, where harvested wrasse

are exported to the salmon farming region in
Western and Northern Norway (Taranger et al. 2013;
Skiftesvik et al. 2014a). Coastal MPAs in the Skagerrak
provide the opportunity to assess whether the increase
in exploitation has affected important population par-
ameters. Wrasse were sampled with passive gear in
four of the MPAs and compared with corresponding
control areas of a similar habitat, open to commercial
fisheries. We predicted MPAs to have relatively higher
CPUE and the wrasse to be older and larger than in
the control areas. As males have been found to be
the larger sex in both species (Dipper & Pullin 1979;
Sayer et al. 1996a; Halvorsen et al. 2016), we also pre-
dicted the sex ratio to be more female-skewed in
fished areas. A secondary objective was to compare
the by-catch, size, age and sex composition of wrasse
caught in fyke nets and baited pots, which are the
two types of gear used in the commercial wrasse
fishery and therefore potentially valuable for evaluat-
ing gear-based management regulations.

Material and methods

Study area

The fourMPAs and control areas are situated on theNor-
wegian Skagerrak coast outside the towns of Arendal,
Tvedestrand (two MPAs) and Risør (Table I, Figure 1).
The coastline is characterized with many small islands
and skerries with rocky and sandy bottom substrate.
The two youngest MPAs (Tvedestrand) are larger than
the older ones (Table I, Figure 1). The control areas
were selected on the basis of habitat similarity to sites
in the corresponding MPA (exposure, kelp coverage
and rocky bottom substrate). MPA and control pairs
were separated by a depth barrier (>20 m), or by
having at least 900 m of coastline between them
(Figure 1). The region under study (Aust-Agder county,
southern Norway) has sustained a moderate wrasse
fishery since the early 1990s. Gjøsæter (2002) reported
that 15 fishermen operated within the county, catching
typically 50–100,000 wrasse per year. Consulting with
the current fishermen, the number of fishermen is

Table I. The location, size, year of establishment and exposure
to open sea of the MPAs surveyed in this study.

Locality MPA location
MPA size
(km2)

MPA
est. Exposure

Flødevigen (F) 58°24′–25′N, 8°43′–46′E 1.1 2006 Moderate
Tvedestrand
Inner (TI)

58°34′–36′N, 8°56′–9°0′E 4.1 2012 Low

Tvedestrand
Outer (TO)

58°35′–37′N, 9°4′–7′E 5.3 2012 High

Risør (R) 58°42′–44′N, 9°13′–15′E 0.6 2006 Moderate
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likely to have been slightly higher at the time of study.
Detailed knowledge of previous fishing effort in the
control areas was not available, but local wrasse fisher-
men confirmed that the control areas had been fished
in the year of study (2013) or in earlier seasons. Seasonal
catch data from the last three years was obtained from a
fisherman operating near the Flødevigen MPA and
control area. Wrasse fishermen in this region use small
open boats and fish at all suitable inshore sites with
rocky bottoms (<7 m depths) covered with Laminaria
sp. and other macroalgae species (Gjøsæter 2002).
Both pots and fyke nets are in use and several fishermen
may operate within the same area.

Sampling

Sampling was conducted from August to September
2013 (Table II). Wrasse were captured with unbaited
fyke nets (5 m single leader, 55 cm diameter entrance
ring and leader mesh size of 30 mm) and wrasse pots
(rectangular prism-shaped, 70 × 40 × 29 cm, circular
entrances (75 mm diameter), two chambers and
15 mm mesh-size) baited with 2–3 raw prawns Panda-
lus borealis Krøyer, 1838. As in the commercial fishery,
the gear was deployed on rocky, kelp-covered sub-
strates at 1–7 m depth and hauled the following day
(19–26 hours soak time). At each site (MPA or

control), goldsinny and corkwing wrasse were ran-
domly collected for ageing and euthanized with an
overdose of clove oil. An arbitrary minimum sample
size of 50 individuals per site was decided upon.
Sampling was conducted for 2–5 days, the duration
depending on weather conditions and catch rate.
Only the first goldsinny captured in each area (n =
61–153) were collected for ageing because this
species was more abundant than the corkwing. Gold-
sinny captured later were measured for total length
and released onsite. All other fish species were ident-
ified, counted and released.

Ageing and sex determination

The total length of the fish was measured to the
nearest mm and sex was determined by examining
external colouration and gonad morphology. Corkwing
wrasse males are found in two distinct morphs, ‘nesting
males and sneaker males’ (Uglem et al. 2000). Nesting
males are readily distinguished from females and
sneaker males by having distinct patterns of blue,
green and red. The colouration of females and
sneaker males is brown–green and they have a distinct
blue urogenital papilla. Sneaker males and females are
visually indistinguishable in the field, but could readily
be sexed by inspecting their gonads. The female gonad

Figure 1. Map showing the study area in southern Norway (A) with the four localities along the Norwegian Skagerrak coast used in
this study (B). (C)–(F) show the four MPAs (boxed areas with lines) with the sampling sites (solid fill). (C) Flødevigen, (D) Tvedestrand
Outer, (E) Tvedestrand Inner and (F) Risør.
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is pale or yellow and has clearly visible egg structures,
whereas male gonads are opaque, thin and white. For
goldsinny, the sexes are similar in appearance, but
males have orange or red spots on the lower part of
their abdomen behind the pectoral fins (Hilldén
1981). Sagittal otoliths were dissected out, cleaned
and stored dry. For ageing, the otoliths were placed
in black multi-celled trays containing 96% ethanol
and photographed under a stereo microscope (20×;
Leica MZ 16 A). The otoliths of both species have
broad, opaque (summer) and narrow, translucent
(winter) growth increments, which allowed age to be
determined without further processing (Sayer et al.
1996a; Uglem et al. 2000). Age was determined by
counting winter zones. Two trained people read the
otoliths independently and agreed about the age of
those yielding disparate estimates. Non-readable gold-
sinny otoliths were excluded (n = 40).

Data analysis

Differences in body size (total length, TL) between
sexes were assessed with two-sided t-tests assuming
unequal variances. We used generalized linear
models (GLMs) to test for differences between the
sampling localities, effects of MPAs and influence of
sampling gear on the following response variables:
CPUE (the number of wrasse in each fyke net or pot
haul), age, total length and sex ratio (proportion of
males). The models were fitted separately for each
species with the appropriate distribution of errors. A
likelihood ratio test was used to compare the goodness
of fit of models with and without an interaction effect
between protection and locality for each response vari-
able:

response = Protection + Locality + Gear

+ (Protection× Locality)
(1)

response = Protection+ Locality+ Gear (2)

This provided a framework for testing whether the
responses to protection differed among the four

localities. Including the Gear covariate accommodates
for any variance arising from the differences in selec-
tive properties of the two gear types, as the pro-
portion of the two gear types differed slightly (121
pots and 180 fyke nets in total; Table II). Because
we compared models chosen a priori, all explanatory
variables were kept in the final model (as determined
by the likelihood ratio test) regardless of their statisti-
cal significance. CPUE was estimated for fish larger
than or equal to the minimum size limit (110 mm
for both species at the time of study, 2013), and mod-
elled by a negative binomial error distribution using
the MASS-package in R (Venables & Ripley 2002).
The length data were modelled with a Gaussian
error distribution with normality assumptions of the
residuals checked by diagnostics plots from the
fitted model object. For modelling age, the goldsinny
data best conformed to a Poisson distribution,
checked for over-dispersion by comparing degrees
of freedom with residual variance of the model. For
corkwing, 65% of the individuals were either one
year old or young-of-the-year. Therefore, corkwing
age was transformed to a binary response variable
(age 0–1 = 0, age 2–4 = 1) before modelling. A
binary response was also used to model sex ratio
(the proportion of males). For corkwing, sneaker
males were omitted from this analysis. Lastly, we
compared the proportion of by-catch species in the
two gear types with a proportion test. When report-
ing the observed relative difference in means
between MPA and control areas, data from both
gear types were pooled, as the relative proportions
of the two gear types were similar in MPA–control
pairs (Table II). All statistical analyses were performed
using the R software version 3.2.2 (R Core Team 2015).

Results

In total, 3906 goldsinny and 709 corkwing were cap-
tured and measured for total length for the eight
study sites from 24 August to 12 September 2013; of

Table II. Number of gear used, number (n) of wrasse and goldsinny caught and aged (in parentheses) at the control and MPA sites.
Locality (date) Treatment Pots Fyke nets % pots n goldsinny (aged) n corkwing (aged)

Flødevigen
(30.08–03.09)

MPA 46 30 61 914 (153) 90 (90)
Control 47 31 60 1249 (146) 112 (112)

Tvedestrand (inner)
(24.08–29.08)

MPA 8 14 36 400 (97) 80 (80)
Control 15 24 38 328 (79) 58 (54)

Tvedestrand (outer)
(24.08–29.08)

MPA 6 6 50 195 (112) 117 (117)
Control 7 9 44 153 (98) 86 (86)

Risør
(11.09–12.09)

MPA 12 16 43 473 (100) 108 (108)
Control 12 18 40 194 (61) 58 (58)

Total
(24.08–12.09)

MPA 56 82 41 1982 (462) 395 (395)
Control 65 98 40 1924 (384) 314 (310)

Time of sampling during 2013 is also given for each locality (date format: dd.mm). See Figure 1 for details about the localities.
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these, 846 goldsinny and 705 corkwing were aged
(Table II). Mean length of goldsinny was 105 mm
(range 56–164), while the mean length of corkwing
was 140 mm (range 60–219). Thus, only 36.6% of the
goldsinny were larger than the legal size limit at the
time of the study (110 mm), compared to 93.2% for
corkwing. Goldsinny mean age was 4.2 years and
attained a maximum age of 15 years, while the
average corkwing was 1.4 years, with only one individ-
ual reaching four years. Nesting males of corkwing
were larger (mean = 150 mm) than females (mean =
137 mm; t = 7.00, df = 617.93, P < 0.0001) and
sneaker males (mean = 127 mm, t = 9.35, df = 106.70,
P < 0.0001), but no sex-related difference was evident
for goldsinny (t =−0.54011, df = 1494.6, P = 0.589).
Pooling all sampling sites, the goldsinny sex ratio was
male-biased (62.7%males, SE = 1.7), while for corkwing,
the sex ratio (nesting males to females) was slightly
female-biased (47.2% nesting males, SE = 2.0). Nesting
males were more common than sneaker males
(79.3% of all males, SE = 2.1).

There were considerable differences in catch per
unit effort (CPUE), length and age for both species
between localities and MPA–control pairs (Figure 2).
The CPUE of legal-sized goldsinny was significantly
(33–65%) higher within MPAs relative to harvested
control areas (Table III, Figure 3a). For corkwing, a
model with locality × protection interaction effect
was supported (Table III, Figure 3e). Three localities
had higher abundance (61–91% observed difference
in means) within MPAs (largest effect in the MPA in
Inner Tvedestrand), whereas the Flødevigen MPA had
16.4% lower mean CPUE relative to the control area
(Figure 3b). For length and age, the model with
locality × protection interaction was supported for
both species (Table III). All MPAs had relatively larger
and older corkwing (Figure 3f,g), with a notably
higher difference between the MPA and control area
in Risør (age: 39%, length 16%). On the other hand,
there was no clear effect of protection on goldsinny
body size and age, where the model with interaction
between locality and protection was supported (Table
III). Goldsinny was smaller in the MPAs, with the excep-
tion of Flødevigen (Figure 3b). Goldsinny in Tvedes-
trand Inner MPA was 21% older than in the control
area, while the differences in means between MPA
and control areas were less than 3% at the other
three localities (Figure 3c). The sex ratio in MPA and
control areas did not differ for either species (gold-
sinny: χ2 = 1.7827, P = 0.18, corkwing χ2 = 0.0076, P =
0.93), but there were significant differences between
localities for goldsinny, with more male-biased sex
ratios in Risør (Table III, Figure 3d).

There were significant effects of sampling gear on
CPUE for both species (Table III). For goldsinny, the
observed mean CPUE was 32% higher in pots relative
to fyke nets, whereas for corkwing, fyke nets had 72%
higher relative mean observed CPUE. Moreover, pots
caught smaller and younger goldsinny, but no differ-
ences were detected for corkwing (Table III). There
were close to significant differences in sex ratio
between fyke nets and pots, with pots capturing
more males of both species (Table III). Other species
than wrasse constituted 28% of the total catch in
fyke nets compared to 15% in pots (Figure 4, pro-
portion test χ2 = 149.72, P < 0.0001). Of specific inter-
est was by-catch of the protected eel Anguilla
anguilla (Linnaeus, 1758), which constituted 6% of
the catch in fyke nets, but less than 0.1% in pots
(Figure 4, proportion test χ2 = 213.41, P < 0.0001).
Catch data from a fisher operating in the Flødevigen
area show goldsinny to dominate the catch in all
three years (Figure 5). Ballan and corkwing are cap-
tured in similar proportions, but with different seaso-
nal trends, with catches of ballan highest in June
and July, and highest in August and September for
corkwing. A total of 47,101 goldsinny, 3992 corkwing
and 6172 ballan wrasse were caught and sold by
this fisherman in 2013.

Discussion

This study applied a field-experimental approach to
assess the effects of harvesting wrasse to be used as
cleaner fish in salmonid aquaculture on wild wrasse
populations. Using four replicated MPA–control areas,
we found that targeted species tended to have
higher catch per unit effort (CPUE) in MPAs. For the
corkwing wrasse, MPAs had consistently larger and
older fish, while these life-history effects for goldsinny
were less clear. We also found that the two gear
types can be selective on species composition and,
for goldsinny, size and age. Admittedly, this study
and its design have some limitations. Information on
the intensity and distribution of the commercial fish-
eries would facilitate a clearer interpretation of the
findings, but unfortunately this was not available. The
fishermen did not have records of when and where
they had been fishing and their reporting depended
on the day-to-day weather conditions, season and
competition from other fishermen in the same area.
Moreover, the size, age and physical features of the
MPAs varied, so in the strictest sense, the four MPA-
control pairs are not true replicates. Nevertheless, the
consistent MPA-effects evident for some of the
measured parameters falls in line with our predictions
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based on the development and intensity of the fishery
in this region during the last 20 years. From a conserva-
tion perspective, this study adds to the growing
amount of evidence of positive effects of MPAs on
abundance and demographic structure of harvested
fish species (Lester et al. 2009; Baskett & Barnett
2015). In particular, both goldsinny and corkwing
wrasse are sedentary, territorial reef fish with limited
adult dispersal capacity, so even small protected
areas like those studied here should be efficient conser-
vation tools (Gunderson et al. 2008; Wilson et al. 2010).

Both species showed positive effects of MPAs on CPUE,
although in Flødevigen, CPUE was slightly lower in the
MPA. The abundance, mean body size and survival of
coastal Atlantic cod, a potentially important wrasse
predator, has increased substantially in the Flødevigen
MPA after its implementation (Moland et al. 2013; Fer-
nández-Chacón et al. 2015), so while fishing mortality
may have declined, it is possible that this has been
accompanied by an increase in natural mortality
through increased predator densities (Babcock et al.
2010; Frank et al. 2011). The rate of such indirect

Figure 2. Boxplots showing the median (thick vertical line) and mean (solid squares) of catch per unit effort (CPUE: pooled for both
gear types), total length (mm) and age of goldsinny and corkwing at the four sampling localities (F = Flødevigen, TI = Tvedestrand
Inner, TO = Tvedestrand Outer and R = Risør). Shaded boxes are MPAs, open ones are control sites. The right and left edge of the
box represents the 25th and 75th percentiles, respectively. The whiskers extend to the highest value maximum 1.5 times the dis-
tance between the 25th and 75th percentiles and filled dots represents outliers.
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effects has been shown to be slower than the direct
effects of protection of target species (Babcock et al.
2010), which may explain the similar or better effect
on CPUE in the two youngest MPAs in Tvedestrand.
However, other factors could explain this as well,
such as the larger size of the Tvedestrand MPAs, or it
is possible that fishing intensity in the control areas
has been higher there.

The MPA-effect on size and age differed between
the two species; the MPAs had larger and older corkw-
ing than control areas, but no clear pattern was evident
for goldsinny. A possible explanation could be related
to the finding of higher spatial variation between the
different MPAs for goldsinny age and body size, so
other local factors (e.g. density, predation and
habitat) than fishing may have stronger effects on
goldsinny life-history traits. For example, the obser-
vation that the CPUE of goldsinny was generally
higher than that for corkwing could imply stronger
density effects on the goldsinny. In that context, the
reduced abundance of goldsinny we observed in
control areas may have increased growth rates for
the remaining fish. Moreover, as these two species
have overlapping habitat requirements and diets (Cost-
ello 1991; Sayer et al. 1996a), a reduction in abundance
of the larger corkwing wrasse could benefit the

goldsinny. The considerable variation in goldsinny
size and age structure over distances less than 30 km
as found in this study implies a mismatch between
the unit of management and the spatial variation in
life histories, as seen on larger scales for corkwing (Hal-
vorsen et al. 2016). The same minimum size regulations
are enforced throughout Norway, and populations with
faster growth would reach the size limit at a younger
age and be more prone to overexploitation. If a size-
selective fishery primarily targets immature fish, this
may induce selection for earlier maturation, slower
growth and increased reproductive investment at a
younger age (Law 2000; Fenberg & Roy 2008; Heino
et al. 2015). In a study conducted during the spawning
season in 2014, corkwing examined in Flødevigen were
found to mature in their first or second year, but few
nesting males had reached maturation below the
minimum size limit (L50 = 139 mm), while mature
females were somewhat better protected (L50 =
110 mm) (Halvorsen et al. 2016). The maturation of
goldsinny has not been investigated in Norway, but
they have been found to mature in their second year
in the British Isles (Darwall et al. 1992; Varian et al.
1996), and could spawn for two to three years before
reaching harvestable size (10 cm in those studies)
(Varian et al. 1996; Sayer et al. 1996b). In order to set

Table III. Summary of generalized linear models on the effects of protection (MPA vs. control), locality and gear on catch per unit
effort (CPUE), total length, age and sex ratio (proportion males, sneaker males excluded for corkwing).

Response Species
Likelihood ratio test
Protection × locality Predictors χ2 Df P

CPUE Goldsinny χ2 = 1.30, P = 0.72 Protection 8.66 1 0.003
Locality 8.81 3 0.003
Gear 7.08 1 0.008

Corkwing χ2 = 12.01, P = 0.007 Protection 6.18 1 0.013
Locality 53.40 3 <0.0001
Gear 19.10 1 <0.0001
Protection × Locality 12.30 3 0.006

Length Goldsinny χ2 = 98.99, P < 0.0001 Protection 27.58 1 <0.0001
Locality 100.19 3 <0.0001
Gear 448.68 1 <0.0001
Protection × Locality 100.03 3 <0.0001

Corkwing χ2 = 12.37, P = 0.006 Protection 18.00 1 <0.0001
Locality 10.74 3 0.013
Gear 0.03 1 0.85
Protection × Locality 12.32 3 0.006

Age Goldsinny χ2 = 22.23, P < 0.0001 Protection 6.62 1 0.010
Locality 56.69 3 <0.0001
Gear 57.24 1 <0.0001
Protection × Locality 22.23 3 <0.0001

Corkwing χ2 = 7.12, P = 0.07 Protection 13.30 1 <0.001
Locality 6.55 3 0.088
Gear 0.55 1 0.46

Sex Goldsinny χ2 = 0.76, P = 0.86 Protection 1.78 1 0.18
Locality 20.08 3 0.0001
Gear 3.30 1 0.069

Corkwing χ2 = 4.96, P = 0.18 Protection 0.10 1 0.75
Locality 5.93 3 0.12
Gear 3.83 1 0.050

Significant P-values in bold. A likelihood ratio test was applied to select the model for statistical inference between models with and without protection ×
locality interaction effects.
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appropriate size regulations for maintaining healthy
breeding populations of goldsinny in Norwegian
waters, a comprehensive spatial assessment of
growth and maturation and the underlying factors
causing variation should be conducted.

The sex ratio did not differ between MPAs and
control areas for either species. This makes sense for
goldsinny, as males and females were not found to
differ in body size. Corkwing nesting males were

larger than females, but because almost all corkwing
wrasse were larger than the size limit at the time of
study, the possibilities for the fisheries to be sex-selec-
tive were limited. Stronger male-biased size dimorph-
ism has been demonstrated in populations further
north on the western coast compared to those on
the Skagerrak coast, with a consequently higher
potential for sex-selective harvesting (Halvorsen
et al. 2016).

Figure 3. The predicted effect of protection (MPA or control site) on catch per unit effort (CPUE), body length, age and the
proportion of males as estimated by generalized linear models for goldsinny and corkwing wrasse captured in pots at the four
localities (F = Flødevigen, TI = Tvedestrand Inner, TO = Tvedestrand Outer and R = Risør). Error bars show standard error around
the predicted means. *Corkwing age was modelled with a binominal age distribution (0: 0–1 and 1: 2–4 years).

Figure 4. The relative species distribution in the two gear types
used for sampling wrasse in Skagerrak 2013. The data are
pooled for all sampling sites.

Figure 5. Seasonal variations in landings of the three target
species of a fisherman operating in the Flødevigen area.

8 K. T. HALVORSEN ET AL.



Currently, both pots and fyke nets are used in the
fishery. Many of the wrasse fishermen in southern
Norway were previously involved in a fyke-net fishery
for eel, which was prohibited in 2010, with the eel
now listed as vulnerable according to the International
Union for Conservation of Nature (IUCN). A special
permit has to be obtained in order to use fyke nets
for fishing wrasse, and we have shown that fyke nets
have a significantly higher proportion of eel and by-
catch species. To our knowledge, fishermen release
all by-catch at shallow depths, so the survival of by-
catch species may be expected to be relatively high.
Moreover, pots caught smaller and younger goldsinny,
but this is expected, as the pots used had smaller mesh
size than fyke nets. No gear differences in size and age
were evident for corkwing, which is most likely related
to their larger size and deeper body shape relative to
goldsinny. The fisherman in Flødevigen had higher
catches of ballan than corkwing, as opposed to what
we observed in our sampling. However, the fisherman’s
catches of ballan were highest in June and July,
whereas we sampled in late August and the beginning
of September. In addition, ballan tend to prefer more
exposed sites than do corkwing (Skiftesvik et al.
2014b), and three of the MPAs in this study were rela-
tively sheltered, with low to moderate exposure.

Our study provides the first insights into the effects
of harvesting wild wrasse in Norway, but it should be
noted that the wrasse landings are considerably
higher in western Norway than on the Skagerrak coast-
line (Espeland et al. 2010; The Norwegian Directorate of
Fisheries). Salmonid aquaculture is virtually absent in
Skagerrak, and harvested wrasse are transported to
western and northern Norway, where the local wrasse
population cannot sustain the demand for cleaner
fish (Skiftesvik et al. 2014a). Thus, the modest but sig-
nificant differences between MPA and control areas
we found here would likely have been larger if a
similar study was conducted in the more intensively
fished areas but which unfortunately do not have
MPAs. In addition, the annual national landings have
increased by 32% since this study was conducted, so
differences between fished and unexploited areas
may have increased. The minimum size limit for corkw-
ing was increased from 11 to 12 cm in 2015, but still
82% of the corkwing would be harvestable using the
size distribution in our data. Reduction of wrasse den-
sities may lead to cascade effects in the coastal ecosys-
tems, where the different wrasse are important both as
predators on molluscs and crustaceans (Sayer et al.
1995; Deady & Fives 1995a, 1995b) and as prey for
larger species, such as gadoids, seabirds and otters
(Steven 1933; Rui Beja 1995; Nedreaas et al. 2008).

Moreover, the wrasse diet is size- and sex-dependent
(Sayer et al. 1995; Deady & Fives 1995a, 1995b); thus,
ecological consequences on prey species may be
anticipated if fishing mortality is selective with
regards to size and sex.

We have shown that MPAs in the Skagerrak have a
higher abundance of wrasse and may sustain the
natural size and age composition under increasing
harvest pressure. Thus, MPAs appear to be a useful
management and conservation measure for the tar-
geted wrasses. By conserving a natural abundance,
age and size structure, MPAs may have positive
effects on recruitment and could act as a buffer for
the eco-evolutionary effects of size-selective harvest-
ing. Our data from the MPA–control pairs in the Skager-
rak could provide a baseline for monitoring the
development of the fisheries in this region, but we
also suggest implementing networks of wrasse MPAs
in the other harvested regions. There are still several
knowledge gaps to be filled for the environmental con-
sequences of using wild-caught wrasse as cleaner fish,
specifically on the effect of selective harvesting on
reproduction and recruitment (Darwall et al. 1992; Hal-
vorsen et al. 2016), the indirect ecosystem effects and
the consequences of the large-scale translocations
and escapement of wrasse to genetically distinct popu-
lations further north in Norway (Sundt & Jørstad 1998;
Skiftesvik et al. 2014a).
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