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Abstract

European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso
Sea. However, their route (, 6000 km) and orientation mechanisms are unknown. Several attempts have been made to
prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass
orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where
magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in
which they were housed before the test. At lower temperature (under 12uC), their orientation relative to magnetic North
corresponded to the direction of their displacement from the holding tank. At higher temperatures (12–17uC), eels showed
bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in
orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging)
and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion
that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments
before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they
have been displaced becomes clear when set in the context of the eel’s seaward migration. For example, if their migration is
halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier,
eels would be able to resume their movements along their old bearing when conditions become favorable again or when
they pass by the barrier.
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Introduction

European eels (Anguilla anguilla) undertake long-distance migra-

tions between their spawning grounds in the Sargasso Sea and

their inland and coastal habitats in Europe and North-Africa [1,2].

Small larvae drift with the Gulf Stream to reach their destinations

in Europe. After active upstream migration, they settle in

extremely diverse habitats ranging from brackish water marshes

and marine coastal areas to freshwater rivers and lakes, sometimes

up to thousands of kilometers upstream. When the fish reach

sexual maturity, up to 20 years after their arrival, they migrate

down river systems, navigate coastal areas and then swim across

the Atlantic Ocean to their spawning grounds. Eels form a

panmictic population [3]. There is no known geographic or

temporal genetic segregation for this species. This has been

interpreted to mean that eels from all over Europe meet their

conspecifics at a common spawning location which has yet to be

found.

Eels also display seasonal migrations within a river system and

between fresh- and saltwater habitats [4]. They change their

territories during transitional periods between summer and winter.

Temperature is a driver for these migrations as eels avoid cold

waters [5,6,7]. Movements are directed to warmer waters or places

where they can burrow in sand and mud to overwinter [2].

Habitat transitions usually occur at temperatures around 12uC,

below which eels decrease their activity [8,9,10].

Although temperature can function as an imprecise orientation

cue, eels require an orientation/navigation system as a guidepost

to orient since no coastline or bottom structure is available during

their journey across the Atlantic Ocean. As for temperature,

salinity and odor are unlikely orientation cues because the

gradients in these variables over thousands of kilometers are

inconsistent and small. It is also unlikely that optical features of the

sky (sun, stars, polarization) are used by eel, since they migrate

mainly at night and often travel at great depth [11]. The Earth’s

magnetic field can provide the necessary cues - compass

orientation and navigation - needed to travel long distances in

an environment with few or no alternate guideposts [12].

Both behavioral and electrophysiological responses to magnetic

fields have been observed in fishes. Sockeye salmon (Oncorhynchus

nerka) alevins and smolts changed their directional preference with

shifts in the horizontal component of the magnetic field [13,14].
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Conditioning experiments showed that yellowfin tuna (Thunnus

albacores) could discriminate between Earth-strength magnetic

fields of different intensities and inclinations [15]. Rainbow trout

(Oncorhynchus mykiss) learn to discriminate between the presence

and absence of a magnetic anomaly and are sensitive to

inclination, intensity and direction of the magnetic field

[16,17,18]. Neural responses to changes in the direction and the

intensity of the magnetic field have been recorded from the

trigeminal system of this fish [16]. A magnetic sense has also been

observed in non-migratory fishes. Significant bimodal orientation

and alignment was found in zebrafish and carp [19,20,21], but no

evidence for a magnetic sense was found in goldfish [22].

Because of its lengthy migration, Anguilla sp. was among the first

animals to be tested for magnetic orientation [23]. However,

earlier studies failed to show consistent orientation relative to the

magnetic field [24,25,26], presumably because they were carried

out in non-uniform magnetic fields [27,28], in the presence of

large electrical artifacts [29,30,31], or at magnetic intensities that

were orders of magnitude above that of the Earth’s magnetic field

(e.g. [32]).

The objectives of this study were to determine 1. whether

conditions could be identified in the laboratory that would elicit

consistent orientation by European eels relative to an earth-

strength magnetic field, and 2. whether European eel can orient

relative to an earth-strength magnetic field under controlled

laboratory conditions.

Materials and Methods

Ethics Statement
No permits were required by the Norwegian authorities for

collection of eels or to carry out these experiments since no eels

were harmed in this study.

Test Fish
The European eels (hereafter ‘‘eels’’) tested in these experiments

were collected at two locations (Fig. 1): the river Imsa (58.9 N and

5.9 E) in western Norway and along the Skagerrak coast (58.72 N

and 9.22 E) in southern Norway. Imsa eels were caught in a trap

(NINA aquatic research station) as they were leaving the river

presumably on their reproductive migration. Skagerrak eels were

caught using eel pots by commercial fishers. This particular fishing

gear targets resident eels and, therefore, most of these eels were at

the yellow stage, but some individuals showed signs of silvering.

The stage of eels was determined according to Durif et al. [33].

Eels were transported by car in oxygenated water to the Institute

of Marine Research’s (IMR) research station on the archipelago of

Austevoll, Norway (60.09 N and 5.26 E).

Testing and Training Tanks
Testing was conducted at IMR’s magnetic orientation facility

(60.12 N and 5.21 E: Hufthamar, Austevoll, Norway), 9 km

northwest of the research station. At this latitude, declination is

less than 1u W. The test building (built out of non-magnetic

material) is located in a field around 145 m away from the nearest

electrical disturbance (power generator, high power cables, and

buildings). To ensure that the site was not subject to any magnetic

anomaly, the area around the building was mapped using a

Geometrics 816/826A proton precession magnetometer (H.H.

Stockhausen, unpublished). The building houses the test tank, the

coil-system as well as the electrical and video recording equipment.

Saltwater is pumped directly from the sea (400 m away) into a

header tank that supplies two outside training tanks and the test

tank (Fig. 2). The test tank sits on a pedestal so that the bottom

part of the tank coincides with the middle of the coil system where

the magnetic field is the most homogeneous. The pedestal and test

tank sit on an independent concrete plate so that walking around

the test tank does not cause any vibrations in the water. The test

tank measures 1.40 m in diameter and 0.90 m in height. It is fitted

with a black hexagonal funnel-like PVC insert (Fig. 3). The inner

vertical part of the funnel measures 30 cm and is 60 cm wide. It

then slopes out on the sides. During each test, the behavior of one

animal was recorded in complete darkness using an infrared

camera located above the test tank.

At least two days before testing, eels were divided into two

groups and moved to the testing facility. A group of eels was

placed in one of the two training tanks (diameter = 1.20 m,

height = 1 m). The only cues that differed between the training

tanks, other than those associated with the location, were the

directions of water inflow. In training tank 1, the continuous inflow

of seawater was supplied from a pipe located at 30u relative to

magnetic north. In training tank 2, the inflow was located at 300u.
Tanks were covered with a black PVC lid. Water was drained

from a pipe in the center of the tank.

The training tanks were located 25 m away from the test

building but on opposite sides of the building (Fig. 2). Pipes

(approximately 60 cm in length) were placed inside the training

tanks for shelter. These floated at the water surface and their

alignment changed irregularly as a consequence of the water

current coming from the inflow.

Seawater in the test tank and in the training tanks came from

the same header tank but the water temperature inside the

Figure 1. Location of sampling sites of eels and testing facility.
doi:10.1371/journal.pone.0059212.g001
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building was always 1–2uC higher than in the training tanks when

the tests started.

Magnetic Coil System
Electricity was provided by a generator located 220 m away.

Electric current was routed through an uninterruptible power

supply (UPS) to stabilize it. The UPS was connected to an

adjustable multichannel power supply and then to the switchbox

that controlled the coil system.

The cube coil system follows the design of [34], (see also [35])

with a set of four double-wrapped coils. One coil was used to

cancel the horizontal component of the ambient field and the

remaining three coils were used to produce artificial magnetic

fields matching the intensity and inclination of the ambient field

and aligned in one of four directions with magnetic north at

geographic north, east, south, or west. Bearings were pooled from

an approximately equal number of eels tested in each of the four

magnetic field alignments (each eel was tested only once). This

made it possible to factor out any consistent non-magnetic bias

and retain only the component of orientation that was a response

to the magnetic field.

During each test, the eel remained in an area in the center of the

coil system restricted by the funnel-like insert which corresponded

approximately to a cylinder (30 cm radius, 35 cm length) inside of

which the magnetic field was uniform [35]. Magnetic field values

were recorded using a three axis Applied Physics 520 fluxgate

magnetometer during each test. Total intensity inside the coil

system was set to replicate as closely as possible total intensity of

the ambient field and varied from 50.3 mT to 51 mT. The

deviation from the inclination of the ambient field (73u) was ,1u.

Testing Protocol
One of the main difficulties in establishing a protocol to test

responses by animals to magnetic fields resides in eliciting an

observable response; in our case, finding a criterion that will reveal

the eel’s directional preference. Previous studies on eels used body

position, success in traversing mazes, or escape behavior along the

tank walls. However, eel behavior is unpredictable and under

natural conditions many days can pass before they move. Even at

Figure 2. Schematic drawing of the test building and training tanks. Distances are to scale (the scale is indicated above the black line).
Circles indicate the position of the training tanks. Details of the training tanks show the location of the water inflow (cylinders) and the directions eels
were taken out of the training tanks.
doi:10.1371/journal.pone.0059212.g002
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the migratory (silver) stage, eels can remain motionless for several

days [36,37].

In our study, we carried out experiments under different

temperature conditions spanning the threshold for triggering eel

migration, i.e.: 6–17uC. Trials were carried out between April and

October 2010 during daytime. Each individual was tested once, in

one of the four alignments of the magnetic field in the testing tank.

Subjects were tested alternately from the two holding tanks. For

each trial, the artificial magnetic north direction was preset inside

the testing tank at geographic north, south, east, or west.

Eels were displaced from two outdoor holding tanks, located in

opposite directions from the indoor testing tank. The observer

collected an eel from one of the training tanks by removing one of

the floating shelter pipes, transporting the eel into the testing

building in the pipe, and allowing the eel to slide out of the pipe

into the release device, which consisted of an open plastic basket.

The eel was always taken out of the water on the same side of the

training tank (tank 1: c. 360u; tank 2: c. 180u). The paths taken

from the training tanks to the test building were not straight and

the transfer tube was swung from side to side during the

displacement to the test building (over approximately 20 m).

Once the eel was transferred from the tube to the release device

inside the test building (lights off), the release device was hooked to

a pulley above the center of the test tank, and again spun so that it

revolved around its vertical axis to disorient the eel while the

observer quietly left the room. The observer then lowered the

release device from the observation room into the water to release

the eel. There was no water flow in the testing tank while eels were

being tested.

After release, the animal’s behavior was recorded using an IR

camera under IR LED illumination over an 11-minute sequence.

This time period was chosen based on preliminary experiments on

the behavior of eels in the testing tank (Durif, unpublished).

Typically, the eel would first swim out of the immersed release

device and settle to the bottom of the tank. It then circled along

the bottom and then made vertical incursions, finally choosing a

direction along the sloped panels (Fig. 3). The location where the

eel swam up the sloped side of the funnel and contacted the water

surface were recorded as an escape direction (ED). After ,10

minutes, the eel would generally stop swimming and remain

stationary at the bottom of the tank. Approximately 6 trials were

conducted in one day. As expected, eels showed no or very little

movement at temperatures ,6uC and those tests yielded no

results. After each trial, the insert was scrubbed with a mop to

remove or spread any olfactory cue left by the previously tested

individual. The water was changed from day to day but not

between trials conducted on any one day.

Data Analysis
Equal numbers of eels were tested in the four horizontal

magnetic fields (north, south, east, and west) to factor out any

consistent topographical bias. However, some eels never moved

resulting in a slightly unequal design (tests in the north field: 14;

south field: 13 east field: 14, west field: 12 tests). Videos were later

analyzed by a blind observer with no knowledge of the artificial

direction of magnetic North that was set. The Rayleigh test was

used to determine if the distributions of the mean bearings of

individual eels were non-randomly distributed [38]. Statistics for

bimodal distributions were calculated by doubling each data value

and then testing using the Rayleigh test. The V test was used to

assess whether the observed angles had a tendency to cluster

around the direction of displacement [38]. The Watson’s U test

was used to compare the mean distribution of yellow and silver

stage eels [38]. The circular-linear correlation (r’) between

temperature and orientation data was calculated according to

[39].

Results

The escape directions (ED) of eels were recalculated relative to

the direction of the artificial magnetic north in the testing tank. For

example, if ED was 35u and the alignment of magnetic north

during testing was to the west (270u), the ‘‘magnetic bearing’’

would be 125u. Bearings were also standardized according to the

direction of their displacement away from the holding tank (tank 1:

c. 360u; tank 2: c. 180u).
Magnetic bearings were significantly correlated with water

temperature in the training tanks (6u,temperature ,17u; circular-

Figure 3. Schematic of the test tank and funnel insert. Once the release device is lowered into the tank, the eel is able to come out in any
direction. Its escape direction (where it touches the water surface along the slopes of the funnel) is recorded as a bearing.
doi:10.1371/journal.pone.0059212.g003
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linear correlation: r’ = 0.45, n = 53, p,0.001). At temperatures

below 12uC, eels significantly oriented in the direction of

displacement (Fig. 4A; m = 331u, r = 0.46, n = 31, p = 0.001). At

temperatures above 12uC, the distribution of magnetic bearings

was indistinguishable from random (r = 0.25, n = 22, p = 0.25);

however magnetic bearings displayed bimodal distribution along

an axis of 97–277u (Fig. 4B; r = 0.40, n = 22, p = 0.027). The two

distributions (low and high temperature) were significantly

different (U2 = 0.683, df1 = 22, df2 = 31, p,0.001). The V tests

showed that at low temperature, bearings were significantly

clustered around the direction of displacement (expected mean:

360u, V = 0.40, p,0.001) but not at high temperature at which

bearings were perpendicular to displacement (Fig. 4B; expected

mean: 360u, V = 20.046, p = 0.62).

The distribution of magnetic bearings did not differ significantly

between yellow and silver stage eels (U2 = 0.06, df1 = 22, df2 = 31,

p.0.5).

The distribution of EDs relative to geographic north (i.e.

ignoring the alignment of the magnetic field in the testing) was

random both below and above 12uC (Fig. 4C and 4D; respectively:

p = 0.56 and p = 0.83). This shows that there was no consistent

non-magnetic orientation in the testing arena due to topographical

cues (any visual, olfactory or auditory asymmetries in the testing

tank).

Discussion

Eels exhibited a consistent direction of orientation relative to the

magnetic field. The directional preference was specific to the

location of the training tank in which they were held prior to

testing. The directional preference corresponded to the direction

of displacement away from the training tank and not to any other

cue (such as water inflow, for example). An analogous response

was observed in earlier studies of newts, in which individuals

continued to orient in a direction away from the training tank

when they were displaced along the shoreward axis away from

their training tank [40,41,42]. In our study, the water in the test

tank was 1–2uC higher than in the training tank. Thus, the

displacement towards the test tank resulted in a more favorable

water temperature, perhaps reinforcing the eel’s preference for the

displacement direction. As expected, the directional response was

stronger at lower testing tank temperatures (6–11uC) compared to

Figure 4. Orientation of Anguilla anguilla under four artificial magnetic conditions at temperatures between 6 and 17uC. Eels taken
from training tank 1 are represented by diamonds and eels taken from training tank 2 are denoted by circles. Bearings (relative to magnetic North)
were standardized relative to the direction of displacement. The triangular symbol represents the direction of displacement. The center arrow shows
the mean angle of the group weighed by r (scaled 0–1) and the 95% confidence interval. The inner circle represents a significance level of 5% for the
Rayleigh test. A and B are bearings standardized to the direction of the magnetic field; C and D are topographical bearings (relative to geographic
north). A and C: Tests carried out at temperatures ,12u. B and D: Tests carried out at temperatures .12u. Bearings on B have been doubled as they
displayed significant bimodal distribution.
doi:10.1371/journal.pone.0059212.g004
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higher temperatures (12–17uC), although in both cases the water

temperature in the testing tank was 1–2uC higher than in the

training tanks. The lower temperature range in the testing tank

corresponds to the ‘‘environmental window’’ in which eels migrate

[7,43]. Eels avoid cold water [5] at all life history stages. Hence, in

our experiment, yellow and silver eels did not behave differently:

mean escape directions were not significantly different for the two

life stages.

Registering the direction of passive displacement and subse-

quently orienting in the same direction may also be a way for eels

to regain the main flow of a river system when they encounter

local turbulence and possibly contradictory cues. Eel frequently

stop during their downstream migration when environmental

conditions are not favorable (i.e. periods of low water flow, as well

as during daylight hours or when turbidity is low, presumably to

avoid detection by predators). Telemetry studies demonstrate that

eels typically rest in places where there is no current [36]. In the

absence of current flow, using compass cues to reorient in their

previous direction of displacement (i.e. the river axis) would allow

them to resume their migration when environmental conditions

become favorable.

This behavior would also be useful during their oceanic

migration where no coastline or bottom structure is available to

provide them with cues for orientation. Eels display diel vertical

migrations of amplitudes of up to 800 m between day and night

[11]. They may rest on the seabed during daylight [44]. Flow

direction often changes vertically in the water column, and flow

rate is low (almost zero) near the seafloor. Remembering the

magnetic compass direction of their previous migratory path

would have an obvious advantage in an environment devoid of

any topographical cues.

At higher temperatures (12–17uC), eels exhibited bimodal

orientation along an axis perpendicular to the axis along which

they were displaced. If displacement corresponded to downstream

movements along the river axis, then bimodal orientation would

represent y-axis orientation, defined by Ferguson and Landreth

[45] as movement perpendicular to a shoreline towards either land

or deep water. The use of a magnetic compass for y-axis

orientation has been demonstrated in amphibians, freshwater fish,

and turtles [40, 46, 47, 48 and references therein]. In eels,

orientation along the y-axis at higher temperature would occur

during spring and summer: eels will search for food in the more

shallow areas along the banks while finding refuge from predators

and high temperature in deeper water. Hence, a bimodal

orientation perpendicular to the axis of displacement - which eels

demonstrated in our experiments - is consistent with their

behavioral ecology at higher temperature.

Using a protocol that eliminated topographical cues such as

olfactory (odor trails in the water), mechanical (vibrations caused

by the observer), visual or auditory cues in the test building, we

showed that eels are able to orient relative to the magnetic field.

Eels tagged and released at sea can maintain a compass direction

[44,49]. Here, we present evidence indicating that they are likely

to use the Earth’s magnetic field to do so. Eels in the present

experiments did not orient according to an innate course, as the

orientation directions of the two groups were clearly opposite and

linked to the training tank. Therefore, it appears that they are able

to register a direction which they can subsequently use to guide

their movements.

Whether eels can sense large scale gradients in the inclination or

the intensity of the magnetic field to determine geographic position

still has to be tested by simulated magnetic displacements (e.g.

[50]). Future experiments at the Austevoll magnetic orientation

facility, involving different values of magnetic inclination and

intensity simulating a displacement to the Sargasso Sea area, may

provide new insights into the location of the European eel’s

spawning grounds.
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