Sensory Biology and Behaviour in Support of Marine Ecology, Fisheries Ecology, and Aquaculture

In order to design an adequate rearing environment for marine organisms, we must first know details of their fundamental biology and ecology: their sensory abilities (particularly vision and olfaction, since their feeding behaviour is guided primarily by these two senses), their behaviour under different rearing conditions, and also how both of these change with size and developmental state. Until recently, …

A unique approach to answering these questions

The first principles approach requires an ability to collect information on the fundamental biology and life support requirements of organisms targeted for aquaculture. Our approach brings together several modern biomedical and ethological techniques in order to generate the kinds of information that are essential to the planning and implementation of husbandry protocols for marine organisms targeted for commercial production.The basis …

Techniques to study vision: spectroradiometry and microspectrophotometry

Spectroradiometry is used to measure light (intensity and quality), in the air and underwater. We use a high-resolution portable scanning spectroradiometer to measure the light field in natural environments, sea pens, indoor aquaculture systems, and experimental settings. The instrument can also be used to measure spectral transmission through materials and/or organisms, and reflectance off surfaces. In this way, we determine what …

Technique to study vision, olfaction and mechanoreception: electrophysiology

Electrophysiological recordings allow investigators to determine the physiological responses of animals to their surroundings and the manner in which sensory information is gathered and coded by the central nervous system. Essentially, the technique allows us to ask organisms what they see, smell, hear and feel (i.e., the tactile sense). Thus, this approach is used to evaluate sensory responses to various …

Techniques to study behaviour: silhouette and schlieren imaging and motion analysis

Silhouette video-based (SVP) three dimensional motion tracking and move path analysis allows detailed observations of the reactions of aquatic organisms to different environmental conditions. SVP is superior to standard cinematographic or video imaging techniques in various ways. First, it allows filming of events in a large depth of field (approximately 20 cm) with a relatively large field of view (15 …

Magnetic sense test facility

The magnetic sense test facility was specially built out of non-ferrous material and located away from any possible magnetic interference. The building consists of two rooms: one for testing and the other for observation. Saltwater is pumped directly from the sea and supplies both the test tank and outside training tanks. Prior to testing, eels are placed for several days in …